Solution of fractional bioheat equation in terms of Fox’s H-function
نویسندگان
چکیده
Present paper deals with the solution of time and space fractional Pennes bioheat equation. We consider time fractional derivative and space fractional derivative in the form of Caputo fractional derivative of order [Formula: see text] and Riesz-Feller fractional derivative of order [Formula: see text] respectively. We obtain solution in terms of Fox's H-function with some special cases, by using Fourier-Laplace transforms.
منابع مشابه
Approximate solution of the fuzzy fractional Bagley-Torvik equation by the RBF collocation method
In this paper, we propose the spectral collocation method based on radial basis functions to solve the fractional Bagley-Torvik equation under uncertainty, in the fuzzy Caputo's H-differentiability sense with order ($1< nu < 2$). We define the fuzzy Caputo's H-differentiability sense with order $nu$ ($1< nu < 2$), and employ the collocation RBF method for upper and lower approximate solutions. ...
متن کاملParametric Study of Fractional Bioheat Equation in Skin Tissue with Sinusoidal Heat Flux
This paper deals with the study of fractional bioheat equation for heat transfer in skin tissue with sinusoidal heat flux condition on skin surface. Numerical solution is obtained by implicit finite difference method. The effect of anomalous diffusion in skin tissue has been studied with different frequency and blood perfusion respectively, the temperature profile are obtained for different ord...
متن کاملNumerical solution of fractional bioheat equation by quadratic spline collocation method
Based on the quadratic spline function, a quadratic spline collocation method is presented for the time fractional bioheat equation governing the process of heat transfer in tissues during the thermal therapy. The corresponding linear system is given. The stability and convergence are analyzed. Some numerical examples are given to demonstrate the efficiency of this method. c ©2016 All rights re...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملExiststence and uniqueness of positive solution for a class of boundary value problem including fractional differential equation
In this paper we investigate a kind of boundary value problem involving a fractional differential equation. We study the existence of positive solutions of the problem that fractional derivative is the Reimann-Liouville fractional derivative. At first the green function is computed then it is proved that the green function is positive. We present necessary and sufficient conditions for existen...
متن کامل